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Abstract. This paper introduces a family of explicit and unconditionally stable algorithms 
for solving linear differential equations which contain a time-dependent Hermitian operator. 
Rigorous upper bounds are derived for two different 'time-ordered' approximation schemes 
and for errors resulting from approximating a time-ordered exponential by an ordinary 
exponential operator. The properties and the usefulness of the product formula algorithms 
are examined by applying them to the problem of Zener tunnelling. The most efficient 
algorithm is employed to solve the time-dependent Schrodinger equation for a wavepacket 
incident on a time-modulated rectangular barrier. 

1. Introduction 

The time development of a quantum mechanical system is governed by the time- 
dependent Schrodinger equation (TDSE) 

where in general H ( t )  is a given time-dependent linear Hermitian operator (we use 
units such that h = 1). For an isolated system H ( t )  is independent of time, i.e. the 
Hamiltonian, if the Schrodinger representation is chosen. In the interaction representa- 
tion or in the case where the system is subject to time-dependent external forces, H (  t )  
depends explicitly on time. 

The purpose of the present paper is to develop numerical algorithms to solve (1.1). 
Standard numerical methods, such as Runge-Kutta, are not well suited to integrate 
(1.1). The basic problem is that these methods do not conserve the norm of the 
wavefunction, an essential requirement on any method that aims at solving (1.1). Our 
interest in numerical methods to solve (1.1) results from the observation that, if H (  t )  
is independent of time, the Trotter formula and generalizations [l-41 of it provide a 
powerful mathematical setting for constructing algorithms that automatically satisfy 
the requirements for a proper treatment of quantum mechanical problems. 

The idea behind these algorithms is to approximate the time-evolution operator 
U( t ,  to) = exp(-i(t - t J H )  by an ordered product [ 5 ]  of unitary operators. A direct, 
extremely important, consequence of employing unitary approximations to the time- 
evolution operator is that the resulting algorithms are unconditionally stable, both 
from theoretical [ 6 ]  as well as from numerical [4] points of view. 
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5778 J Huyghebaert and H De  Raedt 

To illustrate the approach assume that H = A+ B, such that both the eigenvalue 
problem for A and B can be solved in closed form. The simplest Trotter formula 
approximation reads 

(1.2) 

which is correct up to O( 7) .  Obviously, the right-hand side of (1.2) is a unitary operator. 
A numerical algorithm that implements (1.2) would automatically preserve the norm 
of the wavefunction. To implement (1.2) in practice, use is made of the fact that the 
A and B can be diagonalized explicitly. As it is straightforward to devise much more 
efficient algorithms [4] by using generalizations of the Trotter formula, we strongly 
recommend not using (1.2) for practical purposes. It serves to illustrate the concept, 
nothing more. 

Generalizing this concept to the case where H ( t )  depends on time is non-trivial. 
The formal solution of (1.1) can be written as 

U (  to + 7, t o )  = e-I'H = e-tTA e-irR 

9 ( t )  = U+(t,  t o ) + ( t o )  (1 .3 )  

whereby the symbol 

is defined to be the solution of 

Solving ( 1.5) by iteration yields the well known perturbation series 
11 

U+(t, to) = 1 - i  J ' d t ,  H ( t , ) + i 2  [fidtl  I dt, H ( t , ) H ( t , ) + .  . . . (1.6) 
f n  

For our purposes (1.6) is useless, as truncating the series at some point would yield a 
non-unitary approximation to U+( t ,  to) .  From (1.6) it is seen that the subscript + can 
be interpreted as the 'time-ordering' symbol. As no use is made of (1.6) in what follows, 
the precise meaning of + is not important. It is sufficient to know that U+( t ,  to)  is the 
solution of (1 .5)  and has the evolution property 

U+(t ,  t o ) =  U+(t ,  t,)U+(r,, t o )  t 3 t ,  3 to. (1.7) 

Starting from (1 .5)  and (1.7) it is straightforward to demonstrate that U+( t ,  to)  shares 
many of the properties of exponentials [7]. The inverse of U+(t,  to) ,  to be denoted by 
U;'( t, to) = U-( t ,  t o )  = U:( t ,  t o ) ,  is the formal solution of 

Other useful identities are collected in the appendix. 
To set up a product formula framework we can proceed in two different manners. 

We may start from the formal representation of U+( t, to)  in  terms of a single exponent 

(1.9) 

as given by Birkhoff [8], Feynman [9], Kubo [lo], Fer [ l l ] ,  Magnus [12] and others. 
Note that in general X (  t ,  t o )  is an infinite series of operators, so that we have to make 

U+(t ,  to)  = eX('.'o) 2: eX('l'oJ 
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some approximation and replace X by 2, as indicated in (1.9). The next step is to 
approximate eX"-'o' by one of the generalized Trotter formulae 

e * [ f , l n l  e*'Tl,f,,-l) e 2""" ( f , , - l . i , , -2)  * . .  ek"'(r,3io) (1.10) 

Alternatively we can approximate U+( t, to)  by a product of similar operators 

U+(?, to)= fi+(t, to)= f i Y ' ( t ,  r n - l ) f i Y - " ( t n - l ,  t n - > ) .  . . f i Y Y t , ,  r o )  

fiik'(tk, t k - l )  = e xi h J ( r k . i h - l  I ex:h i h . r h - l  I . . .  ex;,h '~ r h . i l  - I  1. 

(1.11) 

and then in turn approximate each of the operators by a product of exponentials 

(1.12) 

Note that if use can be made of Lie algebra properties of the operators involved, some 
of the steps are exact, i.e. do not involve making an approximation. 

We have chosen to follow the latter route because in practical applications it is 
simpler and more flexible than the former. The general strategy that will be adopted 
is to exploit the flexibility in choosing operators and orderings such that the resulting 
approximant can be used in numerical work. 

To illustrate the basic idea of these 'time-ordered' approximation schemes assume 
that H( t )  = A( t )  + B( t ) .  The first step is to approximate the time-evolution operator 
as follows 

U+(t,tO)=exp+(-i~'(A(s)+B(r))ds 10 

f i+ ( l ,  to)=exp+(-i / , :A(.)  ds)exp+( -i [ l lB(s)ds)  

( 1 . 1 3 ~ )  

(1.136) 

Then the most simple approximation is to replace the time-ordered exponentials of 
the right-hand side by ordinary exponential operators, 

U+( t, to)  = exp (-i I,: A( s) ds)  exp (-i Jr: B (  s) ds) . (1.14) 

Often it is the case that A(s) and B ( s )  are such that the right-hand side of (1.14) can 
be worked out in more detail. For example, if A(s) = A and B ( s )  = f ( s ) B  then 

exp+ (-i 1.1 A(s) ds) = exp( -iA( t - t o ) )  (1.15) 

(1.16) 

If A( t )  and B (  t )  can be diagonalized analytically (1.14) can be used to solve the TDSE 

numerically. In this paper we develop the framework to extend and examine these 
ideas in a systematic, rigorous manner. 

The plan of the paper is as follows. In  section 2 rigorous upper bounds are derived 
for two different 'time-ordered' approximation schemes and for the errors resulting 
from approximating time-ordered exponential by ordinary exponential operators. In 
section 3 we examine the properties and the usefulness of product formula algorithms 
by applying them to the standard problem of Zener tunnelling. The numerical results 
are compared with those obtained from the Numerov method. The conclusion is that 
product formula algorithms out-perform the Numerov scheme in all respects, and this 
in spite of the fact that the latter is particularly well suited to deal with the problem 
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at hand. In section 4 we use the technique developed in this paper to unravel the 
transmission properties of a wavepacket incident on a time dependent rectangular 
barrier. 

2. Theory 

In this section the theoretical foundation of product formula based algorithms will be 
given. For simplicity of notation and presentation, it will be assumed that the operator 
H (  t )  can be written as a sum of two conditions A( t )  and B( t )  such that both of them 
are diagonalizable (for any 1 )  not only in theory but also in practice. 

As already mentioned above, the simplest scheme amounts to putting 

U ,  * ( 1 ’  ( t + r ,  t )=exp+ (-i J l l+r  ~ ( s )  ds)  exp, (-i ~ ( s )  ds) .  (2.2) 

In the appendix it is rigorously shown that the error resulting from this approximation 
is bounded as 

I I U T ( t + r , t ) - ~ y ( t + r ,  tils j:dx 1; dyll[A(t+y),  B(t+x) l l l .  (2.3) 

In most applications A( t )  and B( t )  are smoothly varying functions of t. Then A( t + y )  
and B( t + x)  can be expanded in Taylor series and (2.3) simplifies to 

IIU+(f+T, f ) -  o y ’ ( f + T ,  f ) I )  

whereby X ’ (  t )  = d X (  t)/dt. The next step is to replace exp+(-i j:“ X ( s )  ds 
exp(-i j : + T  X ( s )  ds) ,  i.e. f i ? ’ ( t +  7, t )  is approximated by 

fi!+’)(r+T,  t ) = e x p  (-i A(s)  ds)  exp( -i jrr+T B ( s )  d s ) .  2.5)  

Making use of the upper bound (A14), derived in the appendix, one shows that 

)I ir y )( t + r, t ) - fi i’ ’ ( t + 7, t ) I I 

Upon expanding A( t )  and B( t )  in Taylor series and combining (2.6) and (2.4) one finds 

( ( U + ( f + T ,  t ) -  f i Y ’ ( r + T ,  t ) l l  
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demonstrating that the local error of this scheme is O( T ~ ) .  As cy’( t + T, t )  is equal to 
U + ( t + T )  up to O ( T )  we will call this approximation ‘first-order method’ and will 
indicate this by attaching the superscript ‘( 1)’. 

A more accurate approximation to U+( t + 7, t )  can be constructed from the first- 
order approximation by symmetrization [4], i.e. 

?here the bar denotes taking the transpose (not the Hermitian conjugate) of 
Ul“( t +  ~ / 2 ,  t ) .  Further one approximates all the time-ordered exponentials in (2.8) 
by ordinary exponential operators. I f  H (  t )  = A( t )  + B( t )  this approximation of 
U (  t + T, t )  reads 

i r Y ) ( t  + T,  t )  = exp A ( s ) ds ) exp ( -i B ( s ) ds ) exp ( - i [ A ( s ) d s  ) . 
I 

As the general expression for the error bound of this approximation is rather lengthy, 
we confine ourselve to the particular case A( t )  = A which, not entirely by accident is 
also frequently encountered in actual applications. As shown by (A12)  the local error 
of this scheme is O ( T ~ ) ,  hence the name ‘second-order method’. 

In the preceding presentation we have tacitly assumed that A( t )  (or A) and B ( t )  
are sufficiently simple so that they can be diagonalized by hand. In practice this is 
unlikely to be the case. What has been accomplished so far is to replace the intractable 
formal solution U (  t + T,  t )  by ordinary exponentials of operators. If necessary each of 
these exponents can then be computed by invoking the appropriate product formula 
technique for ordinary exponents [4]. 

In the next section, we present an illustrative example where this extra complication 
does not arise. We can therefore focus all our attention on the aspects related to the 
time-dependence of H ( t ) .  In the subsequent section we treat a more complicated 
model where the calculation of exp( -itA) already represents a complicated problem. 
As in [4] it has been explained at great length how to deal with this particular problem, 
no discussion will be presented here. 

3. Illustrative example 

To illustrate how the formalism developed in the previous section can be used in 
practice, it is instructive to consider a model which is very simple, yet non-trivial. It 
is clear that a numerical problem involves at least two non-commuting 2 x 2 matrices. 
As an example we will consider the two-level Hamiltonian 

(3.1) H (  t )  = ata’ + A u x  

where g=q 0) &-(  0 1  ) 
0 -1 1 0  (3.2) 

which is frequently used to describe Zener tunnelling [13, 141. At any time t ,  the system 
is in a state which can be written as a linear combination of up ( 1 , O )  and down (0, 1) 
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states. At a particular instant t I  the eigenstates ( $,( t , ) ,  +*( t l ) )  of H( t , )  can be calculated 
by diagonalizing H( t , ) .  If  a # 0 these eigenstates will evolve with time. This implies 
that in general $E( t , )+”( f 2 )  # 0 if t ,  # t z .  Suppose that at t ,  the system is prepared in 
eigenstate ‘1’. Then, as time passes by, the system will make transitions from eigenstate 
‘1’ to eigenstate ‘2’. This transition is called Zener tunnelling. 

A clear picture of what is going on in the system is obtained by solving numerically 
the TDSE for model (3 .1)  starting from a particular initial state. The outcome of such 
a calculation is shown in figure 1 .  The system is prepared in a state +( t = -10) = ( 1 , O )  
and the probabilities for finding the system in the ‘up’ ( I $ , (  t ) 1 2 )  and the ‘down’ t)12) 
state are monitored as a function of time. 

,-., 
0 -(-<,?.,;-[ , , , , , , , , , , 

-100 -7.5 -5 -2 5 0 2 5 5.0 7 5  10.0 
a f / A  

Figure 1. Probability for the Zener tunnelling system to be in the up i # , ( f ) i 2  (full curve) 
or down I&( f ) i 2  (broken curve) state as a function of time. In this calculation a = A  = h = 1. 

Having discussed some of the characteristic features of model (3.1), we will now 
use it as an example to examine and compare various numerical methods to solve it. 
It is well known [14] that the TDSE for model (3.1) can be written as a second-order 
differential equation 

a t  
(3.3) 

the solutions of which are parabolic cylinder functions. The other component +,( t )  
of the wavefunction can be calculated from 

(3.4) 

If $2( t )  is a real-valued function, the Numerov method [ 151 is known to be well suited 
for solving (3.3) numerically. Collecting real and imaginary parts, (3.3) can be rewritten 
in terms of two coupled equations. Adopting the same strategy for developing the 
Numerov scheme as in the case of a single differential equation, one finds after some 
straightforward algebra 

a,+, Re Q,+, + c Im Q,+, = 26, Re Q“ - a,-, Re Q,-, - c (  10 Im Q, + Im Q,-,) (3 .5)  
-c Re Q,+, + a,,, Im Q,,+, = 2b,, Re Q,, - a,-, Im Q,,-~ + c(10 Re Q, +Re Q , , - ~ )  (3.6) 
where Q,,,= 14~(7n), a,, = ( l + ~ ~ k ; / 1 2 ) ,  b, =(1-5h2k;/12), c=ah’/12, k:= 
a2(n7)*+A- and 7 is the time-step used to integrate the TDSE. Also in this case the 
local error of the Numerov scheme is O ( T ~ )  [15]. Note that to start the Numerov 
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scheme, the state at t = 0 (i.e. ~ p , , = ~ )  and at t = T = T (i.e. p,,=,) have to be specified. I t  
is not self-starting. 

To set up a first-order product formula algorithm we put A( t )  = ata' and B = Au'. 
The corresponding time-step operator reads 

( 3 . 7 a )  f i l l ) ( t k + ,  , t k )  = e - ~ o d ( 2 k + l ) ~ - / 2  

COS( ~ 7 ' )  + i sin( ~ 7 ~ )  

= ( C O S ( K T ~ )  - i sin( ~ 2 )  
0 

COS(AT) -i sin(A7) 
-i sin(AT) c o s ( A ~ )  

(3 .76 )  

where K = a ( 2 k +  1)/2. Remark that the explicit time-dependence of A( t )  and B( t )  
have been exploited to write ordinary exponents instead of 'exp,'. The second line in 
(3 .7 )  explicitly shows how the calculation can be implemented. In  contrast to the 
Numerov method only the initial state has to be specified, as it should. The local error 
of this scheme is O(.r2).  

As explained in the previous section, a simple symmetrization procedure changes 
the local error from O ( T ~ )  to O ( T ~ ) .  From (2.9) it follows that 

(3 .8a )  i T " ' ( t k + ,  , t k )  = e  - I  T A U  ' / 2 e -I O I T ~  I 2  k 7 1 jo'/ 2 e -I TACT ' / 2 

) cos (A~/2 )  -i s in (A~/2)  =(  -i sin(Ar/2) cos(A7/2) 
( C O S ( K ~ ~ )  - i  sin(K2) 

COS( K T ~ )  + i sin( U') 0 

cos(A~/2)  -i s i n (A~/2 )  
-i sin(A7/2) cos(A~/2)  

(3 .8b )  

is the desired second-order approximation to the time-step operator. 
To compare the accuracy of the three different algorithms, the second-order scheme 

is first employed to solve the TDSE using a time-step T small enough to obtain a solution 
accurate to eight significant digits ( w / A  = 0.610 351 56 x These reference results 
were also used to generate required to start up the Numerov procedure. Typical 
results for the error on (L2( t ) ,  i.e. 11 ~,b~( t )  - G2( t )  11, are shown in figure 2. A first striking 
result is that, in spite of its O ( T ~ )  local error, the Numerov method is less accurate 
than the simplest product formula method. This is not as strange as it might seem at 
first sight. Note that the product formula algorithms become exact if a = 0 or A = 0 
whereas for both limiting cases the Numerov method would keep generating errors. 
In product formula schemes, non-zero local errors result from disentangling exponents 
of non-commuting operators. 

Figure 3 shows the RMS error 1 1  (L( t )  - ?( t )  I/ on the full wavefunction as obtained 
from the first- and second-order product formula scheme. From the theoretical upper 
bound on the local error (see (A91 and (A12)) it is expected that the local error scales 
with T' and T' for the first- and second-order method respectively. Thus for very short 
times t ,  l i lcl(t) - $ ( ' ) ( t ) l l  should be much larger as Il(L(t) - $ ' * ' ( t ) l l ,  as is indeed the case 
(see figure 3 ) .  A more detailed analysis reveals that the local error scales with T"*' 

where n is the order of the product formula algorithm. 
For Hamiltonians which do not explicitly depend on time, extensive numerical 

tests have shown that the upper bounds on the global error also correctly predicted 
the time dependence of the global error [4]. Apparently this is no longer the case for 
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1 3  

c 

- 

Figure 2. The error on $ 2 ( ~ ) ,  j l Q 2 (  1 )  - & ( 1 ) 1 1  of the Numerov method (full curve), first- 
(broken curve) and second-order (dotted curve) product formula method as a function of 
time, for the Zener tunnelling model with a = A  = h = 1 .  

the problem at hand. Figure 3 shows that for long times the error of the first- and 
second-order product formula algorithms are the same. Also the error of the first-order 
product formula algorithm is not a monotonic function of time, a feature which is very 
hard to explain on the basis of ‘worst case’ error bounds, derived by repeated use of 
the triangle equality. Our calculations show that the theoretical upper bounds on the 
global error overestimate the true global error by orders of magnitudes, and are therefore 
of limited practical use. 

4. Time-modulated barrier 

In this section we shall not focus on the properties of the product formula algorithms, 
but we will employ the algorithms developed in the previous chapter to study the 
tunnelling of a wavepacket through a time-modulated rectangular barrier. The 
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Hamiltonian for this system is given by 

whereby V, (x )  = V,O(x)O(d  - x )  is the static, rectangular potential barrier of height 
V, ,  thickness d, and V , ( x )  = V , O ( x ) O ( d  - x )  represents the time-dependent part of 
the barrier which oscillates with frequency w and amplitude V I .  

This model has already been studied by Buttiker and Landauer ( B L )  within perturba- 
tion theory [ 161. They conclude that the tunnelling particle can absorb or emit modula- 
tion quanta hw and that the probability for these processes depends on the modulation 
frequency w, the modulation height V,  and the traversal time T B L ,  i.e. the time during 
which the particle interacts with the barrier. Further, they distinguish two frequency 
regimes. For a slowly oscillating potential, w << ~ / T B L ,  the particle sees, during its 
traversal, an effectively static barrier of height V (  t ) .  If the potential varies rapidly, 
w >> 1 / 7 B L ,  the particle tunnels through a time-averaged potential with effective height 
V,. Buttiker and Landauer argue that the crossover between these two types of 
behaviour occurs at a frequency w B L  where w B L T B L  = 1 [ 161. To determine the traversal 
time TBL of the transmitted particle one can change the modulation frequency w until 
this condition is satisfied. For system (4.1) TBL= dJm/2( V,-  EF) corresponding to 
the time it takes for a classical free particle of mass m and kinetic energy V, - EF to 
travel the distance d. 

Buttiker and Landauer have given a precise mathematical procedure which allows 
the identification of the crossover frequency. Calculating the intensities r ,  of the first 
two sidebands at E + hw it follows from [16, equation (7)]  that 

or equivalently [ 161 

T,  - T- -- - tanh W T B L  
T++ T- (4.3) 

from which B L  identify TBL as a characteristic time specifying the crossover. 
The traversal time TBL is one of the possible expressions for a tunnelling time that 

are used at the moment [17-271. The reason for this ambiguity is the fact that in a 
conservative quantum mechanical system time is not an observable and therefore it is 
not measurable [28]. To get around this difficulty one defines a tunnelling time by 
means of thought experiments [21,29,30]. In this chapter we are not interested in the 
existence of a tunnelling time itself but want to study the frequency-dependent trans- 
mission properties of model (4.1). 

In our simulations [31] we solve the TDSE for Hamiltonian (4.1). At the time t = 0 
the wavepacket has a Gaussian distribution of width U, fixed momentum hk,  = 2 ~ h /  hF 
and energy EF= h2k:/2m. The centre of this distribution is far enough to the left of 
the barrier, i.e. the total probability for finding the particle in or to the right of the 
barrier is negligibly small By solving the TDSE for sufficiently long times a 
transmitted wavepacket will emerge. The transmitted wave is Fourier-transformed with 
respect to space to obtain the energy distribution (up to a change in variable: k/  kF = m). We have chosen the model parameters d,  V , ,  V I  and h2/2m such that the 
barrier is opaque, i.e. almost completely reflecting [ 161. For convenience we express 
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all length scales in units of h F ,  wave vectors in units of k F ,  energy in units of EF, w 
in units of E F / h  and time in units of h / E F .  

The accuracy of the numerical results is determined by the three following para- 
meters: the type of discretization formulae used to approximate the second derivative 
in (4.1), the mesh size 6 and  the time-step T used to integrate the TDSE. In practice 
we have used a five-point difference formula to approximate a2/aX2 and have taken 
20 points per unit wavelength ( A F  = 206). In this problem the time-step T is fixed more 
or less by the range of w values of interest. In practice we have worked with T S  
max(o) /  100 so that there is always a sufficient number of time-steps in one modulation 
period. 

An important property of this model is the possibility for the particle to emit or 
absorb energy quanta hw as it tunnels through the barrier. Figure 4 shows us the 
wavevector distribution of some of the transmitted wavepackets for w = 0.5 and U = 32h 

”= 16’ 7 

fJL L 
0 0.2 0.4 0.6 0.8 ’ 1.6 1.8 2.0 1 9 

Figure 4. Wavevector distribution of transmitted wavepackets for different V I .  The incident 
wavepacket has width c = UAF, and wavevector k = 1. The other model parameters are: 
V, = 1.5€,, d = 5 A F / 3  and w = 0.5. Peaks at k f 1 corresponds with absorption ( k  > 1 )  or 
emission ( k  < 1) of modulation quanta. ( a )  V, = V,/ 1000, ( b )  VI = V,/ 100, (c )  V, = V,/ IO. 
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for different V I .  This distribution has not only a single peak at the (incident) wavevector, 
k = 1, as in the static case, but there are different peaks at k = -. These peaks 
corresponds with the emission or absorption of modulation quanta. The area under a 
peak is a measure for the probability that the corresponding emission or absorption 
process occurs. The number and weight of these peaks depend on the modulation 
amplitude V, and the modulation frequency w. If Vl/w << 1, figure 4(a)  shows that the 
height of these peaks is much smaller than the one at k = 1. Both the weight and the 
number of the sidebands increase with increasing VI.  For V, = V,/ 10 we find that some 
of the peaks at k > 1 are more intense than the one at k = 1 (figure 4( c ) ) .  

Note that from figure 4 follows that the probability for absorbing quanta is always 
larger than for emitting the same number of quanta. Hence it follows that the energy 
and also the velocity of the transmitted packet will be larger than in the time- 
independent case. This can be seen in figure 5 .  This figure exemplifies the motion of 
the reflected and the transmitted packet. A packet transmitted through a time-modulated 
barrier ( b )  moves faster than a packet transmitted through a static barrier ( a ) .  

N I I I 1 

5 1 0  A 

0 4  -:::M 0 2  O O  20 40 

”- m n 5 1 0  

0 6  
i 
1 

-d 
20 40 60 80 100 

?d 

10  
x ZO 8 

0 6  

0 4  

0 2  

‘0 M 40 60 80 100 
X l h F  

0 4  ? 0 2  O O  k M LO 

Figure 5. Probability density lcL(x, r ) I 2  at different times for a static ( a )  V, = O  and a 
modulated ( b )  V, # 0 barrier. The model parameters are: V,= 1.5EF, V, = V,/lOO, w = 0.5, 
d = 5 A F / 3  and U = 4A,. Note that a different scaling was used at the left and at the right 
of the barrier. 
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We now turn to the frequency dependence of the transmission coefficient 

T ( w ,  a) = lim dxl$(x, t ) l ’ .  (4.4) 
1-Lc  

Figure 6 shows the transmission coefficient for different values of VI/ V,, for frequencies 
O s  o s 1.5. One immediately sees that in all cases the transmission coefficient of the 
time-modulated barrier w # 0 is larger than that of the static w = 0 one. As we have 
discussed above, the modulation leads to an increase in energy. Particles with higher 
energy tunnels more easily, resulting in a larger transmission coefficient. Figure 6 shows 
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Figure 6. Transmission coefficient of a time-modulated rectangular barrier as a function 
of modulation frequency W .  ( a )  Model parameters are, unless specified explicitly by the 
legend, the same as in figure 5 .  The reference line closest to w = 0 corresponds to wBL = 
l / ~ ~ ~ .  The other reference line gives our estimate of w , .  SSE denotes the rigorous solution 
of the stationary Schrodinger equation ( w  =O). Dots represent the results for a barrier 
modulated over a distance d ’ =  d / 3  with amplitude VI = 0 . 0 0 3 E F .  ( b )  Same as ( a )  except 
V,= 1.76EF, and ( c )  same as ( a )  except d = 2 A , .  
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that one can distinguish between two types of behaviour. If  the amplitude of the 
modulation V, is large enough (e.g. V, 3 Vo/lOO) the transmission coefficient at low 
frequencies grows strongly by increasing the modulation frequency. At higher frequen- 
cies the transmission coefficient decreases very slowly. There exist a crossover frequency 
w, between these two regimes. From numerical simulations for barriers of various 
thickness and height (figure 6( b ) ,  ( c ) )  we conclude that the position of w ,  is independent 
of V, and cr (for the values of U considered here). From figure 6 we estimate U,( Vo = 1.5,  
d = 2) = 0.60, w,( V, = 1.76, d = 2) = 0.82 and U,( Vo = 1.5,  d = 2)  = 0.55. Similar calcula- 
tions (not shown) yield U,( V, = 1.32, d = 2)  = 0.38 and U,( V, = 1.8, d = 2) = 0.86. 

The physical mechanism leading to the crossover is the following. The particle can 
gain energy by absorbing modulation quanta. If the energy (incident plus absorbed 
modulation quanta) becomes larger than the barrier height, it does not have to tunnel 
through the barrier but goes over it. This gives rise to the plateau. In addition at certain 
energies there are extrema related to the resonances of the barrier. For I V,l s Vo/lOO 
the frequency at which the plateau in T ( w ,  cr) sets in is well described by the condition 
for the coincidence ofthe first-order sideband energy 1 + o with the first-order resonance 
energy of the static barrier, i.e. 

(4.5) 

Indeed there is almost perfect agreement between the estimates for w ,  from our 
simulations and the corresponding value of wR. For large V, (e.g. V, = Vo/ lo),  higher- 
order peaks appear. Then it is not always possible to identify the crossover in the 
transmission coefficient with the resonance frequency wR because of the very compli- 
cated nonlinear processes. 

Our simulations have led us to identify a crossover frequency U , .  Now we want 
to examine if this frequency is related to the traversal time T B L ,  introduced by B L  [16]. 
At the frequency w B L  = 1/ TBL with ( T~~ = . r r d / m )  there is, as indicated in figure 6, 
no sign of crossover between the two regimes. The product U,( Vo, d)TBL has different 
values for barriers with different V, and d :  U,( V, = 1.32, d = 2)TBLZ4.3, U,( V, = 1.5 ,  
d = 2 ) ~ ~ ~ = 4 . 8 ,  w,(Vo=1.32, d =5 /3 )rBL=4 .4 ,  wc(Vo=1.76, d = $ ) ~ ~ ~ = 5 0  and 
w,( Vo = 1.8, d = 2)TBL = 6.0. These results strongly suggests, that the crossover frequency 
w ,  is not proportional to ~ / T B L .  Note, however, that 

(4.6) 

whereby y = d m  is proportional to the tunnelling exponent of the static ( V, = 0) 
barrier. From this it follows that only for static barriers, having the same transmission 
coefficient, w,(V0, d ) r B L  would be constant. As y is roughly proportional to the 
logarithm of the transmission coefficient of the static barrier, small variations in the 
transmission coefficient will only cause very small changes in U,( V,, d ) r B L .  

Changing the length of the barrier modulation might also affect the tunnelling 
properties. To test this we have repeated some calculations taking V,(x) = 
V , @ ( x ) @ ( d ' - x )  and d ' =  d/3 .  As illustrated in figure 6 ( a )  there are no significant 
changes in the transmission coefficient. We can conclude that there is indeed a crossover 
between the low and high frequency behaviour, but the crossover frequency U ,  cannot 
be related in an obvious manner to the traversal time T B L .  

To compare directly with EL we have also computed the sideband intensities T,, 
as defined by BL [16], in the parameter regime where the E L  analysis applies. Our 
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simulation results, shown in figure 7 ,  for In( T+/ T- )  are in perfect agreement (without 
fitting) with the BL prediction (4.2), for w <0.2. Remark that BL in their derivation 
have made the assumption that w << EF and that EF = 1 in our simulations. For w = w, ,  
In( T+/ T-) deviates from the BL prediction. Our results (figures 6 and 7 )  indicate that 
there is no crossover at a frequency proportional to l /rBL, neither in the transmission 
coefficient nor in T+/ T- .  

Figure 7. Ratio of the sideband intensities T+ and T- against frequency U :  simulation 
results (dots) and BL prediction (full line). The model parameters are: Vo = 1.5EF, V, = 
Vo/lOOO, d = 5 h F / 3 ,  a = 3 2 A F a n d  E F = l .  
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Appendix A 

Here we collect a number of identities used to obtain the rigorous upper bounds on 
which the product formula algorithms are based. In all numerical applications, the 
wavefunctions are vectors in a finite-dimensional Hilbert space and operators are finite 
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square matrices. This leads to considerable simplifications because we can dispense 
with all technical difficulties that would arise if we would have to work with unbounded 
operators. 

In what follows the norm of a vector (wavefunction) is taken to be the usual one, 
namely 114 11 = v'm where (c#I+) = X i  4T+i stands for the scalar product of the vectors 
4 = ( .  . . , $J~, . . .) and +E(. . . , Gi,  . . .). The norm of an operator X is defined by 
llXl1 = m a x l l , l l = l  IlX+II. If U denotes a unitary matrix, it follows immediately that 

Deriving upper bounds for the RMS error between the exact, +( t ) ,  and the approxi- 
mate, i( r ) ,  wavefunction at time t requires several steps. Let fi+( t ,  0) be some approxi- 
mation to the time-evolution operator U+( t, 0). Then 

( A l a )  

(A1 b )  

)I U11 = 11 U-lIl = 1 1  U'II = 1 .  

I I+ ( t )  - c j ( t ) l l=  II( U+(t ,  0) - fi+(t ,  o))+(o)II 

s 1 1  U+(t,  0) - f i + ( t ,  O)II 

as all wavefunctions are assumed to be normalized, i.e. l l+(O)ll = 1. Next the interval 
[O, t ]  is divided in m equally spaced parts. By the evolution property U+(t ,  0) = 
T I I ~ = : = ,  U + ( t k , f k - l )  and fi+(t,O)=Tn;=:=, f i + ( t k , t k - l )  whereby r O = O ,  t , = t  and  is 
the time-ordering symbol. Repeated use of the triangle equality yields 

(A2a) 11 + ( t ) - & t 11 =S 11 U+( t ,  0) - fi+ ( t ,  0) 11 

n u s  the next step is to find some bound on 11 ~ + ( t k ,  f k - I )  - f i + ( t k ,  t k - l ) l l .  

Obviously it is here where the choice of a particular product formula comes in. 
For simplicity we only consider the case where H( t )  = A( t )  + B( t ) .  In the first-order 
scheme the approximation of the time-evolution operator U (  t k ,  t k - l )  is 

Consider the operator 

F(fk, f k - ] ) =  f i ? ) ( t k ,  t k - l ) U + ( f k ,  f k - I ) - l ,  (A41 

Differentiating (A4) with respect to tk gives after some algebra 

x [ A (  U), B( r , ) ]  exp+ (4  j" A(s)  ds) exp, (-i j" B ( s )  ds). (A6) 
I h - I  I A  - I 
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where we have introduced T =  t / m .  From ( A 9 )  it is clear that if m = 1 the error on the 
wavefunctions is always O ( T ~ ) .  

In the special case where A = A(  r )  and B = B( t ) ,  ( A 9 )  reduces to 

which is exactly the rigorous upper bound for the simplest Trotter formula [3,4]. 
To derive the upper bound on the R M S  error of the second-order scheme 

CY)( t k ,  r k - l )  = exp+ (-i [IA 4 s )  d s )  exp+ (-i B ( s )  ds )  
( I k  flL_, ) I 2  

i l i f f L ~ , l  2 

x exp+ (-i 5 A( s )  ds )  
l h - I  

( A l l a )  

one proceeds in exactly the same way as above. Unfortunately the final expression for 
the upper bound in the most general case is rather lengthy. In most applications, it is 
possible to chose A = A(t ) ,  i.e. independent of time. Then the upper bound becomes 
much more tractable and  even useful. It reads 
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and B'(x) =dB(x)/dx.  Putting m = 1 in (A13) shows that I ~ + ( T ) -  $ ' 2 i ( ~ ) l l  = O ( T ~ ) ,  
which justifies the use of the term 'second-order' scheme. In  the full time-independent 
case B = B (  t ) ,  (A13) reduces to the exact upper bound for the second-order Trotter 
formula [3,4]. 

Finally it is necessary to find the R M S  error that results from approximating the 
time-ordered operator of U+( t + T, t )  = exp+( -i l:+T H ( s )  ds)  by an ordinary exponen- 
tial operator exp( -i j : + T  H (  s)  ds). A straightforward calculation, very similar to the 
ones above, yields 

1 1  exp+ (-i j,'+7 H (  s)  ds)  - exp (-i 1," H (  s)  ds) 1 1  

In many practical applications is, H( t )  =f( t ) H ,  where f( t )  is a real function. For this 
particular case (A14) shows that no error is made if exp+( -i H (  s )  ds)  is replaced 
by exp(-iH j : + r f ( s )  ds) .  
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